2015 Yearly Capital Project Hearings

Institution: University of New Mexico

Project Priority: Central Campus #1
Project Title: Farris Engineering Renovation
Project Cost: $ 4,700,000 State Funding Request
$20,500,000 2014 GOB Allocation
$801,500 Previous Appropriation
$26,001,500 Total Project Cost

Project Description: Originally constructed in 1968, Farris Engineering Center no longer meets the needs of its occupants. In addition to housing Engineering faculty and administrative staff, the building accommodates several research laboratories for the Chemical and Nuclear Engineering Department and the Computer Science Department. These labs require infrastructure that the building can no longer supply. Beyond the inability of the facility to meet its mission, the building suffers extensively from code issues. This project includes the gut and remodel of the Farris Engineering building, with the build out of approximately 9,263 GSF of surge space in the Centennial Engineering Building to assist with the temporary displacement of various teaching and research functions while the building is being remodeled. The previously anticipated shell space, approximately 23,465 GSF, will be included in this project as laboratories and research support space. These spaces will support ongoing grant-funded research conducted by Chemical and Nuclear Engineering faculty.

Programmatic Use: Farris Engineering Center currently houses laboratory, office and administrative space, and the remodeled facility would replace these same functions. The construction of additional research space meets the design and planning intentions for the project. Providing more modern space to house ongoing research ensures that faculty members fulfill the requirements of their grant funding. It also improves the ability of faculty to attract additional future grant funding to meet the mission of the University to conduct research and retain its standing as a research institution. The occupants of Farris are primarily facility, staff, and graduate students. Over the years, the building has been modified to include expanding numbers of offices. Larger spaces have been divided into multiple smaller spaces. This has resulted in problematic floor plan with meandering corridors and oddly-shaped rooms. In many cases, offices accommodate more bodies than SF can comfortably support. Updates are required to continue safe occupancy of the building before spaces can be adjusted to meet the needs to the Engineering Department’s growth and changes in technologies and sciences.

Project Priority: Central Campus #2
Project Title: Interdisciplinary Science Building (P&A) – Planning & Design
Project Cost: $ 753,290 State Funding Request
$746,710 2014 Severance Tax Bond
$26,060,000 2016 Appropriation Request
$50,000,000 Other Funds
$77,560,000 Total Project Cost
2015 Yearly Capital Project Hearings

Projects Continued

Project Description: The project requests Planning & Design funding for the replacement of the Physics and Astronomy building, Regener Hall and the addition of the addition of Interdisciplinary labs to be located on the Main Campus. The project will provide approximately 161,100 GSF of Departmental space replacing the poorly performing 60 year-old existing Departmental building north of Lomas Blvd and the 40 year-old existing Regener Hall located on the main campus. Faculty, graduate student and staff offices; general classrooms and resource areas; Junior and Senior class labs; and research spaces, including computer, medium intensity (astronomy, subatomic and biological physics), and high intensity (optics and surface physics) labs; as well as shop and limited chemical and radiological materials storage are to be provided. In addition, a component of interdisciplinary research space will be provided. The Department also requires a small yard for staging of mobile trailer-mounted experimental equipment, large experimental or observation apparatus and staging of and the ability to receive heavy and awkward deliveries near the labs. The project will address the physical and operational challenges presented by the current bifurcated facilities.

Programmatic Use: The Physics and Astronomy and Regener Hall Replacement Building will provide approximately 120,900 GSF (gross square feet) of Departmental faculty, graduate student and staff offices; general classrooms and resource areas; Junior and Senior class labs; and research spaces, including computer, medium intensity (astronomy, subatomic and biological physics), and high intensity (optics and surface physics) labs; as well as shop and limited chemical and radiological materials storage are to be provided. In addition there will be approximately 40,200 GSF of interdisciplinary research space. It is estimated that the resultant building will be approximately 161,100 GSF in size. The Department also requires a small yard for staging of mobile trailer-mounted experimental equipment; the temporary storage and staging of large experimental or observation apparatus; a reserve area for the semi-permanent placement of supplementary experimental apparatus such as specialized compressors for a given research activity; and, the ability to receive heavy and awkward deliveries at a dock near the labs. These deliveries, though not frequent, require a tractor/semi-trailer to be able to maneuver to the dock. This maneuvering area could be shared with another use.

In addition, the Department occupies and has a high utilization of Regener Hall. The distance to Regener Hall presents a problem for students going to and from the bifurcated Departmental facilities since the main Departmental building is located on the north side of Lomas Blvd. Though the Department has, where possible, made best use of scheduling to accommodate students, the distance represents a constraint to future flexibility in how the Department uses its space. The project will address the physical and operational challenges presented by the bifurcated facilities.

North of Lomas Blvd., the original 1952 building contains labs, classrooms, come faculty offices and support spaces. Two temporary modular buildings containing additional faculty offices, meeting areas and support space were added on the north and are reached through a connecting corridor. While these spaces are limited and in need of renovation, the lab spaces are the most critically deficient. The size and configuration of labs is not flexible due to interior masonry walls and antiquated building services (HVAC, electrical power, data and plumbing) create a major obstacle for modern research. Furthermore, the building envelope performs poorly from the standpoint of energy use and infiltration of dust and noise. Over time, the increased traffic along Lomas has presented another challenge to the research labs in the form of increasing vibration.
Modern research space in the new facility will be clustered along a central utilities corridor allowing for moveable walls between individual labs. In this way changing lab requirements, and even needs related to different disciplines can be accommodated more easily.

Project Priority: Central Campus #3
Project Title: Anderson School of Management - Planning
Project Cost:
$500,000 State Funding Request
$721,500 2014 Severance Tax Bonds
$15,000,000 Private Funds
$18,000,000 2016 Appropriation Request
$13,778,500 Other Funds
$48,000,000 Total Project Cost

Project Description: The project is to plan, design and construct a replacement building for the Anderson School of Management (ASM). The project is currently in the planning phase funded by private sources. The project would provide state-of-the-art education for students in the various degree programs. ASM occupies three buildings that are outmoded. The main building, Bldg. #76, was constructed in 1969 and has been in service for over 40 years, without any major capital improvements. ASM also occupies part of the GSM Bldg. 87, constructed in 1987, that also houses the Parish Library, and a small house, Bldg. 149, which was constructed in 1942. In addition, ASM does not have sufficient space for the expanding enrollment. The replacement building would provide 111,700 GSF of classrooms, class labs, faculty and staff offices, support space, and student services space.

In addition the project will include site development costs and utility infrastructure expenses.

Programmatic Use: The project, currently in the planning phase, will provide approximately 111,700 GSF of replacement and expansion facilities. Anderson School of Management does not have sufficient space for the expanding enrollment. The project will include state-of-the-art classrooms, class labs, faculty and staff offices, and support spaces. An important component of the program is to provide student support spaces such as group study rooms, student-gathering areas, and student organization space. There will be a new Advisement and Career Center that provides a major point of contact for students.

Project Priority: Health Sciences Center Campus #1
Project Title: Health Sciences Interdisciplinary Education Building, Phase 3
Project Cost:
$8,000,000 State Funding Request
$10,000,000 HSC Funding Commitment
$12,000,000 Pending 2014 GOB Vote
$30,000,000 Total Project Cost

Project Description: The Health Sciences Center is out of classroom space. The first two phases of the Health Sciences Education Building contain 111,600 GSF. The College of Nursing, College of Pharmacy and School of Medicine all hold classes in this collaborative instructional facility. Phase II of this educational complex was ready for classes for the spring 2010 semester. Phase II Houses classrooms, human anatomy labs and a Clinical Performance Center for students in medicine, nursing, pharmacy, health professions and public health, as well as biomedical graduate sciences students.

This project, the third and final phase of the Education Building, consists of 85,700 GSF. It will provide large classrooms to handle increased student enrollment as well as interdisciplinary
2015 Yearly Capital Project Hearings

Projects Continued

Instruction across programs; provide large class labs for Occupational Therapy and Physical Therapy to handle the increased student enrollment in these programs that are shifting from Masters to Doctoral levels; and will provide more simulation space. The building will also, provide new, innovative instructional class labs to support problem-based teaching and team-based active learning; provide student support and study spaces; and provide some funding for converting back-fill spaces into support areas.

Programmatic Use: This phase will provide appropriately sized, state-of-the-art, flexible classrooms to accommodate changing pedagogy and increased interdisciplinary learning experiences, mandated by accreditating bodies and professional organizations, and demanding by employers. All HSC educational programs will use the facility, which will provide the first major increase in general classroom space (rather than special purpose/class lab space such as provided by the human anatomy lab, simulation center, and PT lab constructed in Phases I and II) since construction of the Health Sciences Services Building in the late 80’s. Construction of Phase III will complete this interdisciplinary education complex that will be used by all educational programs. In spite of State need, and HSC’s desire to address that need, a shortage of appropriate classroom space limits enrollment. As an example, the College of Nursing turned away 143 qualified applicants in FY12 and that increased to 199 turned away in FY14. In the future, enrollment may have to be capped due to lack of the appropriate classroom sizes, and/or lack of back-fill to create offices and support spaces to accommodate new faculty to support any increased enrollments. As an example, while the College of Nursing increased slots in the undergraduate program, the College is now at capacity in terms of classroom and simulation space.

Project Priority: Health Sciences Center Campus #2
Project Title: Center for Development & Disability Autism Center
Project Cost: $25,700,000 Total Project Cost (No State Funding Requested)
Project Description: Plan, design, construct, equip and furnish the UNM Health Sciences- Center for Development and Disability, (CDD) to support state wide diagnostic, treatment, training and information dissemination relative to Autism Spectrum Disorder and other neuro-developmental issues. The proposed Center for Development Disability Autism Center will include Telehealth training and communication facilities, community and conference space, administrative and division offices, and indoor/outdoor play areas. Model learning environments will provide experience-based training for educators with technology upgrades that expand in-home and other satellite location trainings and behavioral interventions to all of New Mexico. The training center will be for therapists, teachers and parents to learn child-specific intervention techniques relative to behavioral issues. The expanded clinical spaces support multi-disciplinary evaluations and parent training relative to Autism Spectrum Disorder and other neuro-developmental issues. Each year more than 1800 graduate and undergraduate students from medicine, education, nursing, occupational therapy, speech therapy, physical therapy, psychology, nutrition, public administration and public health receive didactic or clinical training and/or mentoring in the areas of research or project development through programs at the CDD. CDD staff and faculty, annually, also provide more than 350 continuing education events either in person or through telehealth, reaching more than 11,000 professionals throughout New Mexico.
2015 Yearly Capital Project Hearings

Projects Continued

Programmatic Use: The Center for Development & Disability (CDD) houses the largest facilities in the state for addressing the special needs of autism and other developmental disabilities, providing clinical services to communities as well as technical assistance and training to state and community providers throughout New Mexico. Each year more than 1800 students receive didactic or clinical training and/or mentoring through programs at the CDD. CDD’s numerous projects and programs support the full inclusion of people with disabilities and their families in their community by engaging individuals in making life choices, partnering with communities to build resources, and improving systems of care throughout the state.

The proposed CDD Autism Center encompasses approximately 55,000 – 60,000 gsf of contiguous space containing clinical and diagnostic areas, a resource center, Telehealth training and communication facilities, community and conference space, administrative and division offices, and indoor/outdoor play areas. The permanent location for the facility will be prominent, visible, and proximate to the HSC campus and near public transit routes to reduce reliance on automobiles.

CDD is presently composed of about 115 staff, currently located at Midtown Center West (2300 Menaul NE) and Midtown Center East (2340 Menaul NE) and occupying 37,314 sf of leased space at a cost of over $500,000 per year.

Founded 20 years ago, CDD continues to grow at a substantial rate. CDD has been identified as requiring a new facility that will:

1. provide clinical services that address the severe increase in autism and other developmental disabilities nationwide,
2. provide technical assistance and training for providers and parents to meet this increase,
3. relocate CDD operations strategically within the UNM Health Sciences campus adjacent to operational synergies (supporting Master Plan goals regarding enhanced collaboration adjacencies),
4. mitigate risks and costs associated with a large program subject to off-campus, lease-market conditions (supporting Master Plan goals regarding reduced lease space), and
5. Consolidate into a single, contiguous facility (CDD’s currently disparate programs are spread across 5 floors in 2 separate leased buildings), thereby fostering a more efficient overall operation.

<table>
<thead>
<tr>
<th>Project Priority:</th>
<th>Health Sciences Center Campus #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>College of Population Health</td>
</tr>
<tr>
<td>Project Cost:</td>
<td>$46,662,894 Total Project Cost (No State Funding Request)</td>
</tr>
<tr>
<td>Project Description:</td>
<td>The proposed College of Population Health is proposed will be a free standing facility that will reside on land accessible to students and faculty from both north and main campuses. This building would be an addition to the UNM Facilities Master Plan. The proposed 78,317 gsf multi-story facility will include classroom and research office space, instructional class/labs, physical activity and nutrition learning laboratories, community and conference space, administrative and academic division offices, student support, and food service. The space will be completely accessible and have a simple and direct floor plan for easy orientation of the building’s occupants. Natural light, clean, simple design elements and sustainable features support the training of undergraduate and graduate population health students, population health research and public health practice. Model learning environments with state-of-the-art technology will enhance experiential training for students in community sites throughout</td>
</tr>
</tbody>
</table>
New Mexico. The space is planned to expand in stages. Stage 1 will accommodate the minimal number of faculty and students required for accreditation by the Council on Education in Public Health (CEPH). Subsequent phases will support growth in faculty and students based on demand for on-site education. Building facilities will also be made available to community members for health education opportunities (such as cooking classes for diabetics and physical education for obesity prevention).

Programmatic Use: The College of Population Health will build on UNM HSC’s nationally accredited Program in Public Health. Currently, we have 10 faculty members and offer 3 master’s programs. Accreditation for a School of Public Health requires a minimum of 25 faculty members, five master’s programs and 3 doctoral programs. In addition to meeting these requirements, we propose to educate undergraduate students, and to have a public health practice division that will train currently employed community members who could benefit from public health training. In anticipation of building a College, UNM and NMSU leaders have signed a memorandum of understanding to create formal ties between a new College of Population Health at UNM and the NMSU Cooperative Extension Service. This would extend the reach of public health training into every county in the state. Technological advances will help to bring public health education to communities, and student classroom and web-based learning will be enhanced by field learning in communities of practice.

<table>
<thead>
<tr>
<th>Project Priority:</th>
<th>Gallup Campus #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Construction Technologies Career Center Phase I</td>
</tr>
<tr>
<td>Project Cost:</td>
<td>$2,895,000 State Funding Request</td>
</tr>
<tr>
<td></td>
<td>$ 965,000 Other Funds</td>
</tr>
<tr>
<td></td>
<td>$3,860,000 Total Project Cost</td>
</tr>
</tbody>
</table>

Project Description: This project will plan, design, construct and equip phase I of a construction technologies career training center to provide construction tech woodworking, HVAC/mechanical instrumentation technologies, drafting/pre-engineering and sustainability design and construction technologies labs and classrooms for student jobs training in the growing sustainable construction technologies industries. Phase I will fully construct labs and support classrooms and offices for the Construction Technologies and Sustainable Technologies design and construction programs.

Programmatic Use: The project will plan, design and construct an approximately 12,000 GSF Building Technologies Career Center. The Phase I project for the building will provide 2 Class/labs for training in Construction Technologies and Sustainably Construction systems design and fabrication with additional classrooms and faculty offices. The project will be designed to accommodate a phase II addition to support Drafting and Pre-engineering fabrication and HVAC/Mechanical Instrumentation Technologies training courses with additional onsite materials storage sheds and yards.

The project will provide specific class workrooms for students enrolled in UNM-Gallup’s Business and Technology Division’s degree and certificate programs. The job training programs are directly linked to area employment opportunities and economic development in general construction technologies, sustainable green building mechanical and construction training.

<table>
<thead>
<tr>
<th>Project Priority:</th>
<th>Gallup Campus #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Physical Plant</td>
</tr>
</tbody>
</table>
2015 Yearly Capital Project Hearings

Projects Continued

<table>
<thead>
<tr>
<th>Project Cost:</th>
<th>$1,500,000 State Funding Request</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$500,000 Other Funds</td>
</tr>
<tr>
<td></td>
<td>$2,000,000 Total Project Cost</td>
</tr>
</tbody>
</table>

Project Description: This project is to construct a Physical Plant and storage facility on the Gallup Campus including development for heavy equipment and delivery access to the campus, as well as equipment storage. This project will construct a Physical Plant building in an appropriate location that will allow for secure access, adequate campus-wide storage and exterior secure yards for grounds keeping equipment, recycling, and campus vehicles and include exterior work areas. The project allows the current undersized facility located in the Child Care building to be vacated and frees storage areas in Zollinger Library to be reallocated to student and library use.

Programmatic Use: The project will plan, design and construct an approximately 8,500 gsf Physical Plant building including approximately 5,000 nsf of storage and warehouse. The building will provide staff offices for the Physical Plant Department including campus maintenance, and custodial staff support and work space and materials and equipment storage. Office will include an employee training and meeting room, the campus lock shop and dispatch work room and computer stations for online work orders and inventory processing and employee lockers and uniform storage.

The working warehouse will include a loading dock and high bay garage doors for easy delivery and shop access. Secured storage for campus-wide inventory and Physical Plant equipment, materials and storage and a small engine repairs shop will be located in the warehouse.

The project will provide exterior storage and work areas that the current Physical Plant site cannot, due to site slope and sharing the building with Child Care. The new site will be fully developed with appropriate access and egress driveways, fenced equipment yards with sheds for snow removal, yard maintenance and heavy equipment storage. The lot will provide secure parking and control for campus police and transportation vehicles, recycling and trash handling with special attention for hazardous waste handling, and surplus property processing and storage.

This project will allow the Physical Plant to vacate the undersized building that they currently share with Gallup Campus Child Care, an inappropriate colocation that forces shared access driveways and walking areas with children and heavy equipment.

<table>
<thead>
<tr>
<th>Project Priority:</th>
<th>Taos Campus #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>STEM Technical Career Center Phase II</td>
</tr>
<tr>
<td>Project Cost:</td>
<td>$2,175,000 State Funding Request</td>
</tr>
<tr>
<td></td>
<td>$325,000 Local Funding Match</td>
</tr>
<tr>
<td></td>
<td>$2,500,000 Total Project Cost</td>
</tr>
</tbody>
</table>

Project Description: This project will fully plan, design, site prep, construct, equip and furnish a 6,500 SF addition with fully equipped classroom labs for computer technologies and career advancement courses with specific career counseling services. This addition will complete the STEM Technical Career Center, started in 2007. This project includes the addition of a computer technology lab/classroom, computer classrooms with off-hour study access and an open scheduled classroom as well as career counseling and program support offices. This will complete Phase II of the Klauer Campus Business and Computer Technology Career Education Center.
2015 YEARLY CAPITAL PROJECT HEARINGS

PROJECTS CONTINUED

Programmatic Use: This planned facility completes the 2007 UNM Taos Business and Computer Technology Center which was designed to accommodate this addition. The project will support UNM Taos Career Technologies programs that prepare students for local and state jobs. This project will fully construct an approximate 6,500 SF building addition with fully equipped class labs for computer technologies and design careers with supporting classrooms. The project will include student and program support offices.

<table>
<thead>
<tr>
<th>Project Priority:</th>
<th>Valencia Campus #1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Title:</td>
<td>Chilled Water System Upgrade</td>
</tr>
<tr>
<td>Project Cost:</td>
<td>$1,950,000 State Funding Request</td>
</tr>
<tr>
<td></td>
<td>$ 650,000 25% Local Match</td>
</tr>
<tr>
<td></td>
<td>$2,600,000 Total Project Cost</td>
</tr>
<tr>
<td>Project Description:</td>
<td>Plan, design and construct a campus wide chilled water plant adding a cooling tower and chiller to provide essential infrastructure for the current and future campus needs.</td>
</tr>
<tr>
<td>Programmatic Use:</td>
<td>The Valencia Campus 2013 Master Plan evaluated campus facilities for energy efficiency and water conservation. This plan developed specific projects that would reduce energy and provide utilities savings by replacing facility infrastructure that has reached the end of its useful life. The capital projects request includes replacing campus cooling equipment that has reached the end of their useful life with a campus-wide centralized cooling plant. Aging cooling systems that no longer run effectively and efficiently will be phased into a campus-wide cooling system to optimize outputs and energy savings.</td>
</tr>
</tbody>
</table>